Big Data
Analytics
(All unit PPT)
Syllabus
PART A
UNIT1
What is big data? And why is it Important?: A flood of Mythic “start-up” proportions; Big data is more than Merely big; Why now; A convergence of key trends; Relatively speaking; A wider variety of data; The expanding universe of unstructured data; setting the tone at the top.
UNIT2
Industry Examples of Big Data-I: Digital marketing and non – line world; Don’t abdicate relationships; Is IT losing control of web analytics? Database marketers, pioneers of big data; Big data and the new school of marketing; Consumers have changed. So must marketers;
UNIT3
Industry Examples of Big Data-II: The right approach: cross-channel life cycle marketing; Social and affiliate marketing; Empowering marketing with social intelligence; Fraud and big data; Risk and big data; Credit risk management; Big data and algorithmic trading.
UNIT4
Big Data Technology-I: The elephant in the room: Hadoop parallel world old Vs. new approaches; Data discovery: work the way people’s minds work; Open source technology for big data analytics; The cloud and big data; Predictive analytics moves into the limelight; Software as a service BI. Mobile business intelligence is going mainstream; Ease of mobile application deployment; Crowd sourcing analytics; Inter – and Trans-firewall analytics.
PART B
UNIT5
Big Data Technology-II and Information Management: R&D approach helps adopt new technology; Adding big data technology into the mix; Big data technology terms; Data size. The big data foundation; Big data computing platforms; Big data computation; More on big data storage; Big data computational limitations; Big data emerging technologies.
UNIT6
Business Analytics: The last mile in data analysis; Geospatial intelligence will make your life better; Listening: Is it signal of noise?; Consumption of analytics; From creation to consumption; Visualizing: How to make it consumable; Organizations are using data visualization as a way to take immediate action; Moving from sampling to using all the data; Thinking outside the box; 360o modeling; Need for speed; Let’s get scrappy; What technology is available?; Moving from beyond the tools to analytic applications.
UNIT7
The People part of the equation: Rise of the data scientist; Learning over knowing; Agility; Scale and convergence; Multidisciplinary talent; Innovation; Cost effectiveness; Using deep math, science and computer science; The 90/10 rule and critical thinking; Analytic talent and executive buy-in; Developing decision sciences talent; Setting up the right organizational structure for institutionalizing analytics.
UNIT8
Data Privacy and Ethics: The privacy landscape; The great data grab isn’t new; Preferences, personalization and relationships; Rights and responsibility; Playing in a global sandbox; Conscientious and conscious responsibility;
TEXT BOOKS
1. Michael Minelli, Michele Chambers, Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses Hardcover, 1st edition Wiley C/O series, 2013.
REFERENCE BOOKS
1. Viktor Mayer-Schonberger, Kenneth Neil Cukier: Big Data Are volution that Will Transform, How We Live Work And Think, 1st edition, Hachette India, 2013.
The syllabus and the document provided is good.
ReplyDeleteThanks for the note.
thank you so much Sir,
ReplyDeletefor the PDFs provided
i was struggling from two years to search the material as well as book
Thank you
DeleteSure, thank you. You can share it to anyone.
ReplyDelete